

From Access to Adoption

Why the Value Proposition of Healthcare AI Platforms Must Evolve

A whitepaper by:

Marwan Senhaji, CEO @ HCKonnect

FROM ACCESS TO ADOPTION

Why the Value Proposition of Healthcare Al Platforms Must Evolve

Over the past decade, artificial intelligence has moved from promise to presence in healthcare. Once viewed as a experimental adjunct to clinical practice, it has rapidly become a cornerstone of diagnostic and operational innovation. Yet behind this evolution lies a more complex

reality: the simultaneous acceleration of technological supply and the much slower pace of clinical adoption.

This paper discusses that divergence, how the industry arrived at it, our firsthand experience of this phenomenon and the model we propose to synchronize innovation with adoption. This shift from access to adoption is not only a technological challenge but a structural transformation that redefines how value is created, distributed and sustained across the healthcare ecosystem.

Problem:

The Current Imbalance Between Supply and Adoption When we first began working with AI in healthcare in 2018, the landscape was sparse. Fewer than fifty FDA-cleared algorithms existed and adoption was almost negligible. AI in medicine was more a research experiment than a clinical reality.

Fast-forward to 2025: the landscape has transformed. Over a thousand AI-based medical solutions are now on the market. Continuous tracking by The Medical Futurist and other analysts shows the number of FDA-approved algorithms rising sharply, approaching 700 by late 2023, and surpassing the symbolic 1,000 mark in early 2025.

Yet while the supply of algorithms has grown spectacularly, adoption has followed a very different path.

- Between 2015 and 2020, Al adoption in radiology grew linearly to approximately 30% among US radiologists, primarily through early applications in image detection and triage, marking radiology as a pioneer in steady Al integration without abrupt shifts.¹
- From 2018 to 2024, European surveys showed a consistent increase from 20% to 48% adoption among radiologists, aligned with broader trends in specialties like oncology imaging and supported by gradual regulatory approvals and tool maturation.²
- By 2024–2025, adoption reached 48% in European clinical practice and up to 90% in US health systems for imaging deployments, continuing the linear pattern driven by workflow efficiencies and generative AI for tasks like report generation, without evidence of exponential inflections.³

Adoption is undeniably encouraging. Yet one phenomenon stands out: algorithm supply has evolved along a **convex growth** curve, while adoption has advanced along a more **linear trajectory.**

This imbalance is not merely statistical. It reflects the diverging trajectories of two main players: healthcare organizations on the demand side and AI vendors on the supply side. While hospitals and clinicians struggle to absorb a growing wave of technologies, vendors continue to expand their portfolios and push for market presence. The result is a widening gap between technological possibility and systemic absorptive capacity.

The bottleneck is no longer access to algorithms but the ability to **integrate them meaningfully** into

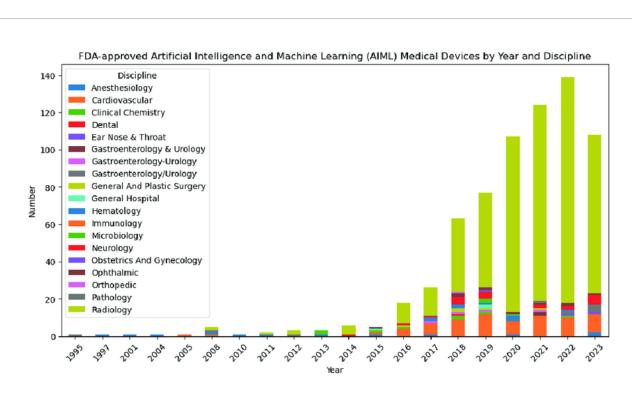
workflows, governance frameworks and trust networks. Hospitals and clinicians are navigating a proliferation of solutions whose cumulative complexity often exceeds their infrastructure, regulatory readiness and training bandwidth. At the same time, AI vendors face a new reality: differentiation can no longer rest solely on technical innovation or regulatory clearance but increasingly on how well they enable adoption within real-world settings.

This imbalance has profound implications on how AI solutions are developed, distributed, and valued. The **value proposition of platforms**, once primarily about access, must now evolve to address the complexities of adoption. In a market saturated with algorithms, value is shifting from the number of models available to their ability to integrate, interoperate and deliver measurable clinical impact.

Still, this evolution does not mean that innovation should slow down—quite the opposite. The continued creation of algorithms remains essential to address emerging

pathologies, refine existing tools and adapt to new modalities of care. What must change is the **definition of value**: not technical sophistication and volume alone, but the balance between ongoing innovation and practical adoption.

In this new landscape, competitive advantage will hinge on **adoptability** as much as on innovation. Platforms that once competed on the breadth of their catalogues will increasingly be judged by their capacity to harmonize diverse models into coherent, usable and clinically effective ecosystems.


Access Used to be the Primary Barrier

In the early days, the key issue was not choice but awareness. Few clinicians had the time or inclination to monitor FDA approvals or sift through academic papers for new solutions. Registries emerged as essential resources. They curated information, allowing time-pressed physicians to quickly identify tools and understand their clinical use cases.

In parallel, curated platforms began to gain traction. These marketplaces simplified discovery and, more importantly, tackled

the formidable challenge of integration. As the head of IT at a major hospital group told us, radiology congresses had become recurring nightmares: radiologists would return enthusiastic about new tools, unaware of the enormous burden this placed on IT to vet, secure, and integrate them. Platforms and orchestration layers such as **TEOHUB**, launched in 2020, solved this headache. With a single integration, hospitals gained access to dozens of algorithms. Access, in other words, was finally becoming manageable.

Food and Drug Administration (FDA)-approved Artificial Intelligence and Machine Learning (AI/ML)-Enabled Medical Devices (Updated data on October 19, 2023). Source: https://www.fda.gov/medical-devices/software-medical-device-samd/artificial-intelligence-and-machinelearning-aiml-enabled-medical-devices.

Turning Point: Adoption Grows, Platforms Face Contradictions

As adoption accelerated after 2021, new dynamics refashioned the landscape. Hospitals and physicians no longer sought isolated tools; they wanted **coordinated** suites of algorithms capable of addressing a broader spectrum of needs. At first glance, this trend seemed to validate the platform model, but the reality proved more complex.

Curated platforms, once trusted as neutral facilitators, began to lose coherence.

Fierce competition drove them to host overlapping or even competing, products.

Meanwhile, vendors, wary of being marginalized, started approaching hospitals directly. What began as a clinician-centered ecosystem gradually turned into a marketplace strained by commercial pressures. Ironically, the very platforms created to simplify access started to dilute their own value.

New Buying Habits and Higher Expectations

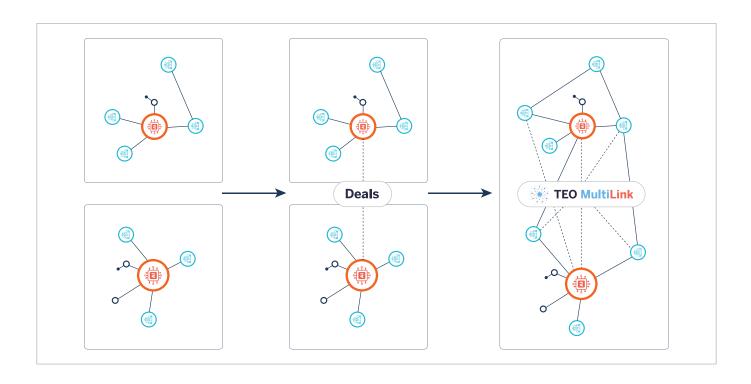
Although adoption still lags behind the flood of new solutions, those who do adopt now purchase differently. Buying patterns have shifted from one-off acquisitions of single algorithms to bundled adoption of multiple, interoperable solutions. Hospitals and physicians expect breadth, compatibility and sustained support.

For AI vendors, this shift poses a strategic challenge: with only one product to sell, how can they ensure long-term relevance and retention? For customers, a single algorithm is no longer enough: they demand ecosystems.

In practice, purchasing behavior is evolving from isolated adoption to the uptake of **AI suites.** Two types of actors are shaping this shift:

- **Aggregators** build comprehensive portfolios either through acquisitions or pipeline expansion. Yet this strategy faces limits: new entrants and niche use cases constantly emerge, making full coverage unattainable.
- Integrators (marketplaces) initially helped by curating and simplifying access, but their model has exposed structural weaknesses:
 - 1. Al builders often pursue direct sales for large deals, often treating marketplaces as lead generation channels.
 - 2. Sales cycles remain long (typically six to nine months), complicating growth models and cash flow.
 - 3. Lead generation is costly (events, sales development reps, digital campaigns) and lifetime value (LTV) often barely exceeds customer acquisition cost (CAC). Referrals, by contrast, are faster and far more efficient.
 - 4. Global expansion requires local presence: selling in Poland means speaking Polish. But building sales capacity across markets is slow, expensive and resource-intensive.

Towards a Networked Model: Redefining Value


The next phase of AI adoption will not be won by platforms competing head-on with vendors: it will be driven by collaborative infrastructures, i.e. networks designed to amplify reach, reduce friction and accelerate adoption collectively. The real challenge now is to enable vendors themselves to evolve into platforms: to aggregate offerings, share distribution channels and scale adoption through cooperation.

This is the philosophy behind **HCKonnect's networked model**. Rather than operating as a marketplace competing with vendors, HCKonnect serves as a collaboration layer, allowing AI companies to cross-sell and co-distribute

one another's solutions.
Several AI companies have already joined the initiative, leveraging a shared network of more than 3,000 institutions.
This model multiplies their reach, aggregates their commercial capacity, and, crucially, enables hospitals to activate new algorithms rapidly through existing integrations.

In doing so, it delivers on the original promise of platforms: simplified access, seamless interoperability and faster clinical impact.

The networked approach transforms fragmentation into synergy, turning individual innovations into components of a broader, evolving ecosystem.

This networked model redefines value once again: the next frontier of healthcare AI is not about owning more algorithms but about connecting them more intelligently, which means aligning innovation with adoption in real time.

When platforms evolve into networks and vendors become collaborators, the system itself begins to learn. Each integration shortens the path from invention to impact, and each shared connection strengthens the ecosystem as a whole.

For hospitals and clinicians, this new channel transforms the experience of adoption. Instead of managing a patchwork of contracts,

integrations, and validation processes, they gain **a single, trusted gateway** to a continuously expanding portfolio of certified solutions. Deployment becomes faster, maintenance lighter and compliance easier to manage.

Physicians can access multiple AI tools directly within their existing workflows through a reporting interface embedded with AI-driven image interpretation, without disrupting clinical routines or IT infrastructure.

Most importantly, the network amplifies what might be called the **virality of trust.** Once an algorithm is validated and adopted by one institution, that

endorsement accelerates acceptance across others. Peer validation and shared references dramatically shorten due-diligence cycles: hospitals can rely on the accumulated experience of their peers rather than starting from zero each time. The result is a faster, safer and more confident diffusion of innovation throughout the healthcare system.

In this sense, the story of AI in healthcare is coming full circle: from scarcity to abundance, and now from abundance to orchestration. The future will belong to those who can turn fragmentation into cooperation and make adoption the new engine of innovation.

Conclusion

Between 2018 and 2023, the story of AI in healthcare was a story of access. Registries and curated marketplaces helped physicians and IT teams to make sense of a nascent and fragmented field. But as adoption accelerates, the needs, and with them, the definition of value have changed.

Today, platforms must go beyond access and

technical integration. They must power ecosystems: fostering collaboration among vendors, streamlining adoption for hospitals and building networks of trust that accelerate safe deployment at scale. The next era of healthcare AI will be defined noy by how many algorithms exist, but how effectively innovation and adoption evolve together.

References

- How Artificial Intelligence Is Driving Changes in Radiology (Inside Precision Medicine, references the 2020 ACR Survey showing 0-30% adoption from 2015-2020): https://www.insideprecisionmedicine.com/news-and-features/how-artificial-intelligence-is-driving-changes-in-radiology/ Primary source cited: Allen B, et al. 2020 ACR Data Science Institute Artificial Intelligence Survey. J Am Coll Radiol. 2021;18(8):1153-1159. (Abstract: https://pubmed.ncbi.nlm.nih.gov/34004172/; Full text may require subscription: https://www.jacr.org/article/S1546-1440(21)00383-3/fulltext)
- 2. Impact of AI on radiology: a EuroAIM/EuSoMII 2024 survey among members of the European Society of Radiology (Insights into Imaging, 2024; shows 20% in 2018 to 48% in 2024): https://insightsimaging. springeropen.com/articles/10.1186/s13244-024-01801-w (Open access; PDF available on site)
- 3. Adoption of artificial intelligence in healthcare: survey of health system priorities, successes, and challenges (PMC, 2025; Fall 2024 survey showing 90% US health systems adoption for imaging/radiology): https://pmc.ncbi.nlm.nih.gov/articles/PMC12202002/ (Open access; PDF available via PMC download)

